Atos放大器E-ME-AC-01F/A6技術(shù)原理
這種輸入級(jí)與上述恒定互導(dǎo)負(fù)反饋輸入級(jí)相比,在輸入電壓級(jí)為-30dB情況下,測(cè)試結(jié)果顯示,恒定互導(dǎo)負(fù)反饋輸入級(jí)給出的三次諧波失真為0.35%,而CFP型輸入級(jí)的三次諧波失真為0.045%,對(duì)其它情況來(lái)說(shuō),后者的三次諧波失真大致為前者的一半。
共射—共基互補(bǔ)輸入電路示于圖1-6(c)在該圖示值情況下,當(dāng)輸入電平級(jí)為-30Db時(shí),失真見(jiàn)效到0.016%左右。另外,由于該電路在輸入管集電極處不存在值得重視的電壓波動(dòng),其主要好處是把輸入器件用來(lái)工作的電壓Vce給降下來(lái)。這樣就可以允許她以較低的溫度工作,從而改善其熱平衡,通常Vce為5V即可工作的很好。
共射—共基互補(bǔ)型輸入級(jí)
將輸入管換成互補(bǔ)負(fù)反饋型對(duì)管
改進(jìn)輸入級(jí)線性的方法
加有電流反射鏡的輸入級(jí)
由于電壓放大級(jí)不僅要提供全部的電壓增益,而且還要給出正個(gè)輸出的電壓擺幅,因而電壓放大級(jí)被人為是聲頻放大器中最關(guān)鍵的部分。然而,設(shè)計(jì)的好的電壓放大級(jí),其對(duì)整個(gè)放大器的綜合時(shí)針是沒(méi)有多達(dá)影響的,電壓放大級(jí)自身產(chǎn)生的失真是很小的。圖1-7給出了6中電壓放大級(jí)的原理圖,其中(a)為以電流源為負(fù)載的常規(guī)電壓放大級(jí);圖(b)為負(fù)載被自舉的常規(guī)電壓放大級(jí);(c)為通過(guò)加強(qiáng)β的射極跟隨器,深化局部負(fù)反饋電壓放大級(jí);(d)為采用共射—共基接法,深化局部負(fù)反饋電壓放大級(jí);(e)為加有緩沖的電壓放大級(jí);(f)為采用交替緩沖對(duì)電壓放大管負(fù)載加以自舉的電壓放大級(jí)。
使電壓放大級(jí)具有交稿的局部開(kāi)環(huán)增益是很重要的,因?yàn)橹挥羞@樣一來(lái)才能對(duì)電壓放大級(jí)記憶線性化,且可采用有源負(fù)載技術(shù),以提高電壓增益。例如圖1-7(a、b、f)所示,若要進(jìn)一步改進(jìn)電壓放大級(jí),其較有成效的途徑是致力于改善其特性曲線的非線性。
功率輸出級(jí)
,決定輸出級(jí)時(shí)針的最基本因素就是工作類別。由于甲類工作狀態(tài)不會(huì)產(chǎn)生交越失真和開(kāi)關(guān)失真,因而成為理想的模式。然而,其產(chǎn)生的大信號(hào)失真仍未能小到可以忽略的程度。對(duì)甲乙類而言,如果輸出功率超出甲類工作所能承受的電平,則總諧波失真肯定會(huì)增大。因?yàn)檫@時(shí)的偏置控制是超前的,其互導(dǎo)倍增效應(yīng)(即位于甲類工作區(qū),兩管同事導(dǎo)通所導(dǎo)致的電壓增益增大現(xiàn)象)對(duì)時(shí)針殘留物產(chǎn)生影響而出現(xiàn)了許多高次諧波。這個(gè)事實(shí)似乎還鮮為人知,恐怕是由于在大多數(shù)放大器中這種互導(dǎo)倍增失真的電平相對(duì)都比較小,并被七臺(tái)河失真所*淹沒(méi)了的緣故。對(duì)于甲乙類而言,通過(guò)對(duì)它與甲乙類失真殘留物頻譜分析可知,除不可避免的輸出級(jí)失真外,所有的非線性都已有效地加以排除,且在奇次諧波幅度上,最佳乙類狀態(tài)要比甲乙累低10Db。實(shí)際上,奇次諧波普遍認(rèn)為是最令人討厭的東西,因此正確的做法是不避免甲乙類工作狀態(tài)。
由此看來(lái),關(guān)于輸出級(jí)工作狀態(tài)的選擇,似乎只能在甲鐳和乙類二者中選取。但是,如果從效率、大信號(hào)失真、溫升及其它失真等方面綜合加以考慮的話,乙類的各項(xiàng)性能指標(biāo)是壓倒其它類別的,因此輸出級(jí)選擇乙類工作狀態(tài)得到廣泛應(yīng)用。
輸出級(jí)的類型約有20余種,例如射極跟隨器式輸出級(jí)、互補(bǔ)反饋對(duì)管式輸出級(jí)、準(zhǔn)互補(bǔ)式輸出級(jí)、三重式輸出級(jí)、功率FET式輸出級(jí)等,還有誤差校正型輸出級(jí)、電流傾注行輸出級(jí)及布洛姆利(Blomley)型輸出級(jí)等。